Portfolio

Data-Driven MarketingSuccess Stories

Real-world applications of data science in B2B marketing, showcasing measurable results and innovative approaches to SEO and SEM optimization.

E-commerce SEO Performance Analysis

Comprehensive SEO audit and optimization strategy for a major e-commerce platform, resulting in 150% organic traffic increase.

SEO
Python
Data Analysis
E-commerce

Key Results

150%
traffic Increase
300+
keyword Rankings
45%
conversion Improvement

Implementation Highlights

python
Analysis
Optimization
# SEO Performance Analysis Pipeline
import pandas as pd
import numpy as np
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt

def analyze_keyword_performance(keywords_df):
    """Analyze keyword performance and identify optimization opportunities"""
    
    # Calculate keyword difficulty vs opportunity score
    keywords_df['opportunity_score'] = (
        keywords_df['search_volume'] * keywords_df['ctr'] / 
        (keywords_df['difficulty'] + 1)
    )
    
    # Cluster keywords by performance characteristics
    features = ['search_volume', 'difficulty', 'current_position']
    kmeans = KMeans(n_clusters=4, random_state=42)
    keywords_df['cluster'] = kmeans.fit_predict(keywords_df[features])
    
    return keywords_df.sort_values('opportunity_score', ascending=False)

# Example usage
top_opportunities = analyze_keyword_performance(keyword_data)
print(f"Identified {len(top_opportunities)} high-opportunity keywords")

Results Summary

Achieved 150% increase in organic traffic within 6 months, with over 300 keywords ranking in top 10 positions.

Technologies & Tools

Python
Pandas
Scikit-learn
Google Analytics API
Search Console API
SEM Campaign Optimization Engine

Machine learning-powered bid optimization system for Google Ads campaigns, reducing CPA by 35% while maintaining conversion volume.

SEM
Machine Learning
Google Ads
Automation

Key Results

35%
cpa Reduction
60%
roas Improvement
80%
automation Efficiency

Implementation Highlights

python
Analysis
Optimization
# SEM Bid Optimization Model
import tensorflow as tf
from tensorflow import keras
import numpy as np

class BidOptimizationModel:
    def __init__(self, input_features=10):
        self.model = self._build_model(input_features)
        
    def _build_model(self, input_features):
        """Build neural network for bid optimization"""
        model = keras.Sequential([
            keras.layers.Dense(64, activation='relu', input_shape=(input_features,)),
            keras.layers.Dropout(0.3),
            keras.layers.Dense(32, activation='relu'),
            keras.layers.Dense(16, activation='relu'),
            keras.layers.Dense(1, activation='linear')  # Bid amount output
        ])
        
        model.compile(
            optimizer='adam',
            loss='mse',
            metrics=['mae']
        )
        return model
    
    def predict_optimal_bid(self, campaign_features):
        """Predict optimal bid based on campaign features"""
        return self.model.predict(campaign_features)

# Initialize and train model
bid_optimizer = BidOptimizationModel()
optimal_bids = bid_optimizer.predict_optimal_bid(campaign_data)

Results Summary

Reduced cost-per-acquisition by 35% and improved ROAS by 60% across all campaigns.

Technologies & Tools

Python
TensorFlow
Google Ads API
BigQuery
Apache Airflow
Multi-Touch Attribution Modeling

Advanced attribution modeling system to understand customer journey and optimize marketing spend across channels.

Attribution
Customer Journey
Data Science
Marketing Mix

Key Results

85%
attribution Accuracy
25%
budget Optimization
12+
channel Insights

Implementation Highlights

python
Analysis
Optimization
# Multi-Touch Attribution Model
import pandas as pd
import numpy as np
from itertools import combinations

class AttributionModel:
    def __init__(self, touchpoint_data):
        self.data = touchpoint_data
        self.conversion_paths = self._prepare_paths()
    
    def shapley_attribution(self):
        """Calculate Shapley values for channel attribution"""
        channels = self.data['channel'].unique()
        attributions = {}
        
        for channel in channels:
            marginal_contributions = []
            
            # Calculate marginal contribution across all possible coalitions
            for r in range(len(channels)):
                for coalition in combinations(channels, r):
                    if channel not in coalition:
                        with_channel = self._conversion_rate(list(coalition) + [channel])
                        without_channel = self._conversion_rate(list(coalition))
                        marginal_contributions.append(with_channel - without_channel)
            
            attributions[channel] = np.mean(marginal_contributions)
        
        return attributions
    
    def _conversion_rate(self, channels):
        """Calculate conversion rate for given channel combination"""
        filtered_paths = self.conversion_paths[
            self.conversion_paths['channels'].apply(
                lambda x: all(ch in x for ch in channels)
            )
        ]
        return filtered_paths['converted'].mean()

# Run attribution analysis
attribution_model = AttributionModel(journey_data)
channel_attributions = attribution_model.shapley_attribution()

Results Summary

Improved marketing budget allocation efficiency by 25% with 85% attribution accuracy.

Technologies & Tools

Python
Markov Chains
Shapley Values
SQL
Tableau

Ready to Transform Your Marketing?

Let's discuss how data science can optimize your SEO and SEM strategies for measurable growth.